Abstract

In this paper, dual-wavelength laser emission of an erbium-doped fiber laser (EDFL) with a tunable distinct wavelength selection of the simultaneously produced laser lines was achieved by applying a parallel comb filter configuration based on the optical Vernier effect. The intracavity inserted proposed comb filter consists of two parallel branches to generate the Vernier effect. Each branch is an in-line Mach-Zehnder interferometer (MZI) filter, which is composed of a polarization-maintaining fiber fusion spliced between single-mode fibers with sphere shapes at both ends. The tunability of the selected laser wavelength was realized by submerging the proposed filter in different sodium chloride/water mixtures. The proposed comb filter-based Vernier effect was used to independently achieve the selection of the dual-wavelength EDFL lines and for refractive index (RI) sensing applications. The in-line M Z I 1 and M Z I 2 structures show a wavelength shift sensitivity to RI variations of -88 and 79nm/RIU, respectively. Our proposed MZI structure presents a reliable, straightforward, and low-cost spectral comb filter for separate tunable dual-wavelength laser generation in the c-band region. Furthermore, the proposed filter structure-based Vernier effect presents a new perspective and method in the RI sensing application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call