Abstract

Laser damage experiments were performed on painted and unpainted aluminum coupons using a 1.07-μm fiber laser at irradiances ranging from 0.2 to 1.4 kW/cm2 in a wind tunnel operating at Mach 0.1 to 0.9. Coupon penetration times of ∼0.5 to 10 s were measured using a silicon photodiode viewing a Lambertian scatter plate placed behind the target. Despite the thin, 0.81 to 0.95 mm, samples and large laser spot diameters, 2 to 3 cm, the effects of radial heat conduction dominate for irradiances of <1 kW/cm2. The fluence required to melt the back surface scales linearly with paint absorbance and the effects of paint aging have been observed. Penetration times for gray-painted aluminum at 287 W/cm2 decrease by 45% as the airflow speed increases from M=0.1 to M=0.2, but remains constant for flow speeds up to M=0.7.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.