Abstract

Indium tin oxide (ITO) coatings are widely used as transparent electrodes for optoelectronic devices. The most common preparation methods are sputtering, evaporation, and wet chemical deposition. ITO coatings can also be manufactured by solution deposition of ITO nanoparticles followed by furnace thermal annealing with the major motivation to reduce equipment investment. However, conventional furnace annealing is energy intensive, slow, and limited by the peak processing temperature. To overcome these constraints, we suggest using a laser beam for ITO nanoparticle annealing over a large area. It is shown in the present study that a low cost, high power, and high efficiency laser can yield large area functional ITO films in a process that carries substantial promise for potential industrial implementation. Furthermore, laser annealing generates higher electrical conductivity than conventional, thermally annealed nanoparticle films. The optical and electrical properties of the annealed ITO films can also be altered by adjusting laser parameters and environmental gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.