Abstract

Human L-type Ca2+ channel alpha 1C subunit gene (CACNL1A1) maps to the distal region of chromosome 12p13, and is composed of approximately 50 exons spanning over 150 kb of the human genome as estimated by restriction map analysis. However, the structure and the total length of the 3'-end of the gene is not clear because the size of several big introns remains unknown. Here the fiber-FISH technique was used to determine the relative order and size of eight partial genomic DNA clones from the central and 3'-terminal regions of CACNL1A1. The total physical distance of this region, including the size and gap distances between the clones were re-estimated. The results show that the physical order of the tested clones was 5'-g14-5 > g12-2 > g10-8 > g4-5 > g16-7 > g8-3 > g12-5 > g6-20-3'. Their individual sizes vary between 6.7 and 21.9 kb. Clones g6-20 and g12-5, both containing repetitive exon 45/46-like element, were found to be located within 59.1 kb downstream of g8-3 containing earlier identified polyadenylation site, i.e. 229.5 kb away from clone g14-5 (exons 10, 11). The possible implications of this structural complexity is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.