Abstract
It is well known that two-dimensional mappings preserving a rational elliptic fibration, like the Quispel–Roberts–Thompson mappings, can be deautonomized to discrete Painlevé equations. However, the dependence of this procedure on the choice of a particular elliptic fiber has not been sufficiently investigated. In this paper we establish a way of performing the deautonomization for a pair of an autonomous mapping and a fiber. Starting from a single autonomous mapping but varying the type of a chosen fiber, we obtain different types of discrete Painlevé equations using this deautonomization procedure. We also introduce a technique for reconstructing a mapping from the knowledge of its induced action on the Picard group and some additional geometric data. This technique allows us to obtain factorized expressions of discrete Painlevé equations, including the elliptic case. Further, by imposing certain restrictions on such non-autonomous mappings we obtain new and simple elliptic difference Painlevé equations, including examples whose symmetry groups do not appear explicitly in Sakai’s classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.