Abstract
Our pilot study examined the potential of exhaled breath analysis in studying the metabolic effects of dietary fiber (DF). We hypothesized that a high-fiber diet (HFD) containing whole grain rye changes volatile organic compound (VOC) levels in exhaled breath and that consuming a single meal affects these levels. Seven healthy men followed a week-long low-fiber diet (17 g/d) and HFD (44 g/d) in a randomized crossover design. A test meal containing 50 g of the available carbohydrates from wheat bread was served as breakfast after each week. Alveolar exhaled breath samples were analyzed at fasting state and 30, 60, and 120 minutes after this meal parallel to plasma glucose, insulin, and serum lipids. We used solid-phase microextraction and gas chromatography–mass spectrometry for detecting changes in 15 VOCs. These VOCs were acetone, ethanol, 1-propanol, 2-propanol, 1-butanol, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, 2-methylbutyric acid, hexanoic acid, acetoin, diacetyl, and phenol. Exhaled breath 2-methylbutyric acid in the fasting state and 1-propanol at 120 minutes decreased (P = .091 for both) after an HFD. Ingestion of the test meal increased ethanol, 1-propanol, acetoin, propionic acid, and butyric acid levels while reducing acetone, 1-butanol, diacetyl, and phenol levels. Both DF diet content and having a single meal affected breathVOCs. Exploring exhaled breath further could help to develop tools for monitoring the metabolic effects of DF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.