Abstract

Exploiting the promising third near-infrared optical window (1600–1870 nm) for deep bioimaging is largely underdeveloped, mostly because of the lack of stable femtosecond laser sources in leveraging the less scattering loss and locally reduced water absorption. In this letter, we demonstrate the fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser (TDFL) at 1785 nm. The mode-locked TDFL (via nonlinear polarization rotation) operates stably at the soliton pulsing regime with a fundamental repetition rate of 46.375 MHz. Utilizing a two-stage fiber amplifier incorporated along the pulse chirping fiber, the power of the laser pulse is boosted up to 690 mW. After dechirping with a diffraction grating pair, laser pulse with a duration of 445 fs, pulse energy of 5.7 nJ, and peak power of 12 kW is achieved. Higher power can be achieved by exploiting low-loss high power fiber components at this special wavelength range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call