Abstract

In recent decades, fiber Bragg grating (FBG) sensors found widespread acceptance in several biomedical applications thanks to their indisputable advantages. Thermal ablation treatments (TATs) account for one of the fields where FBGs have gained large applicability for temperature measurements. The sensing element length can affect the accuracy of the FBG measurement in this application. A longer length provides a more prominent peak in the FBG reflected spectrum, resulting in a higher signal-to-noise ratio (SNR). A shorter FBG length implies a lower SNR but offers the benefits of better spatial resolution. Therefore, the choice of an adequate length can be crucial to minimize measurement errors, but the literature lacks exhaustive investigations on this parameter. The aim of our study is to supply additional knowledge about the effect of two different FBG lengths on temperature estimation in the presence of linear thermal gradients and with gradients mimicking the condition caused by TATs. In both cases, we compared the output of a 10-mm FBG with those of four FBGs 1 mm long, using a thermal camera as a reference instrument. Results suggest the better suitability of shorter sensors to retrieve thermal gradient information along their position instead of the longer FBG, which could lead to unacceptable measurement errors during TATs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.