Abstract

Robotic control and force-feedback applications require multi-axial force and torque sensing. One possible implementation of future sensors is seen in fiber optic force torque sensors, since the signal demodulation may be located in some distance to the actual sensor and they also do not have to include any magnetic material. This article presents a fiber Bragg grating-based force and torque sensor with six degrees of freedom. The general setup resembles a Stewart platform. Its connecting beams are formed by the fiber used to measure the deformation of the transducer. The element creating stiffness may be of arbitrary form. We demonstrate how the sensor is realized and show results of all six force and torque measurements. We present a theoretical model of the sensor. The results in this work demonstrate the feasibility of a fiber-optic force-torque sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.