Abstract

Fiber Bragg gratings (FBGs) in a hollow eccentric fiber (HEF) have been proposed and demonstrated experimentally. The single-core and two-core HEF FBGs have been inscribed successfully using KrF excimer laser (248 nm), respectively. The temperature and axial strain sensing properties of the two samples have been measured. The experimental results indicate that the temperature and axial strain sensitivities of the two samples are similar, but they are smaller than that of conventional SMF-FBGs. Furthermore, the bending characteristics of the two-core HEF-FBG strongly depend on the bending direction due to the asymmetry of the fiber. Therefore, the proposed two-core HEF-FBGs facilitate temperature-compensated vector-bending sensing by measuring the difference between peak shifts of the two gratings. In addition, the two-core HEF-FBG can be a promising candidate for achieving two-channel filter since the signal crosstalk between the two cores can be largely eliminated by the central air hole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call