Abstract

This paper reports proof-of-principle of an optical fiber Bragg grating (FBG) operating as an electric field sensor. The system is based on a semiconductor diode laser, emitting around 1577.5 nm that interrogates the fiber sensor around its maximum reflectivity point. The application of a strong electric field causes a small variation of the optical path length of the waveguide due to electrostriction and thus perturbs the grating peak reflectivity wavelength. Calibration and dynamic range tests are performed using a parallel-plate capacitor to create a variable electric field (1–100 kV/cm). A great potential is pointed out in view of possible field applications for voltage graduation in power generators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.