Abstract
By use of high-intensity (approximately 200 GW/cm2) femtosecond 264-nm laser light and a phase mask technique, Bragg grating inscription in a range of different photosensitive and standard telecom fibers (both H2-free and H2-loaded) was studied. The dependences of the induced refractive index modulation versus the incident fluence as well as the thermal decay curves were compared with similar dependences for gratings fabricated by other existing methods. It was shown that with high-intensity UV laser irradiation, two-quantum photoreactions occur in the irradiated fiber core, that result in a significant photosensitivity enhancement of the investigated fibers in comparison with conventional low-intensity 248-nm exposure (by 6-128 times, depending on fiber type and irradiation intensity).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.