Abstract

Objective. Optogenetic modulation of neuronal activity requires precise and flexible light delivery to deep brain regions. Flat cleaved optical fibers combined with electrodes are widely used in implantable optogenetic devices for light delivery and electrical monitoring of neural activity. However, the flat fiber tip geometry induces serious tissue damage upon insertion, and makes it difficult to adjust and control the spatial extent of illumination within the brain. With their strongly increased tissue-compatibility and the possibility of spatial illumination control, tapered fibers outperform cleaved fibers in targeted neural photo-stimulation. Approach. In this work, we describe our device concept, and present a novel approach for reproducible fabrication of tapered fiber tips via grinding. Furthermore, we characterize recording electrodes by commenting data obtained from electrochemical impedance spectroscopy (EIS). We also investigate the impact of different cone angles (14°, 30°, 60°, and 90°) on the illumination profile and optical throughput. Main results. We fabricated a fiber-based optrode with cone tip and two deposited electrodes. Custom grinding setup for fabrication of tapered fiber tips with various cone angles is developed as a part of our research. Microscope images showed very good optical quality of cone tips. The results of transmitted optical power measurements performed with integrating sphere suggest that, compared to the flat cleaved optical fiber, transmitted power decreases exponentially with cone angle reduction. Obtained emission profiles (as induced fluorescence in Rhodamine 6G water solution) indicate very strong effect of cone angle on shape and size of illumination volume. Results obtained from EIS show the effect of electrode size on its recording capability. Significance. Compared to optrodes with flat cleaved optical fiber, the demonstrated fiber-based optrode with cone tip allows controlled light delivery with reduced invasiveness. The possibility to fabricate reproducible fiber tips with various cone angles enables control of light delivery in optogenetic experiment. The results presented here give neuroscientists the possibility to choose the appropriate tissue-compatible cone geometry depending on their stimulation requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call