Abstract
The internal organization of myofibers and connective tissues has important physiologic implications for muscle function and for naturalistic behavior. In this study of forelimb muscle morphology and primate locomotion, fiber architecture is examined in the intrinsic muscles of the shoulder (musculi deltoideus, infraspinatus, supraspinatus, subscapularis, teres major, and t. minor) and arm (m. coracobrachialis, biceps brachii, brachialis, and triceps brachii) in the semiterrestrial vervets (Chlorocebus aethiops) and arboreal red-tailed guenons (Cercopithecus ascanius). Wet weights and lengths of whole muscles, lengths of fasciculi and their associated proximal and distal tendons, and angles of pinnation were measured to estimate morphologic correlates of physiologic properties of individual muscles: force, velocity/excursion, energy expense, and relative isometric or isotonic contraction. Neither mean total-shoulder:total-arm ratios for muscle mass nor total reduced physiological cross-sectional area exhibited significant (P < 0.05) interspecific differences, thus emphasizing the importance of fine-tuning musculoskeletal analyses by the data collected here. The results generally support those previously published for quadriceps femoris and triceps surae of the hind limb in these species (Anapol and Barry [1996] Am. J. Phys. Anthropol. 99:429-447). The fiber architecture of the semiterrestrial vervets is largely suited for higher velocity while running on the ground. By contrast, the architectural configuration of red-tailed monkeys implies relatively isometric muscle contraction and passive storage of elastic strain energy for exploitation of the compliant canopy, where substrate components are situated beneath the sagittal plane of the animal. With respect to relative distribution of maximum potential force output among muscles of either shoulder or arm groups in these otherwise hind limb-dominated quadrupedal primates, statistically significant interspecific differences are best interpreted in light of braking, climbing, and, for vervets, the transition between ground and canopy. The interspecific differences shown here for the intrinsic muscles of the shoulder and arm underscore the significance of intramuscular morphology in reconciling structure and function with regard to locomotor behavior. Its analysis and interpretation lend support to consideration of "semiterrestrial" as a bona fide locomotor category uniquely different from what is practiced by dedicated arboreal and terrestrial quadrupeds that occasionally visit the habitat of one another. Data from a more committed terrestrial species would clarify this enigma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.