Abstract

Antibiotic resistance continues to be a growing concern for global health, accentuating the need for novel antibiotic discoveries. Traditional methodologies in this field have relied heavily on extensive experimental screening, which is often time-consuming and costly. Contrastly, computer-assisted drug screening offers rapid, cost-effective solutions. In this work, we propose FIAMol-AB, a deep learning model that combines graph neural networks, text convolutional networks and molecular fingerprint techniques. This method also combines an attention mechanism to fuse multiple forms of information within the model.The experiments show that FIAMol-AB may offer potential advantages in antibiotic discovery tasks over some existing methods. We conducted some analysis based on our model's results, which help highlight the potential significance of certain features in the model's predictive performance. Compared to different models, ours demonstrate promising results, indicating potential robustness and versatility. This suggests that by integrating multi-view information and attention mechanisms, FIAMol-AB might better learn complex molecular structures, potentially improving the precision and efficiency of antibiotic discovery. We hope our FIAMol-AB can be used as a useful method in the ongoing fight against antibiotic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.