Abstract

Flavonoids are useful compounds in medicinal chemistry and exhibit conformational isomerism, which is ruled by intramolecular interactions. One of the main intramolecular forces governing the stability of conformations is the hydrogen bond. Hydrogen bond involving fluorine covalently bonded to carbon has been found to be rare, but it appears in 2'-fluoroflavonol, although the F···HO hydrogen bond cannot be considered the main effect governing the conformational stability of this compound. Because (19)F is magnetically active and suitable for NMR studies, the (1h)J(F,H(O)) coupling constant can be used as a probe for such an interaction in 2'-fluoroflavonol. In fact, the (1h)J(F,H(O)) coupling was computationally analyzed in this work, and the F···HO hydrogen bond was found to be its main transmission mechanism, which modulates this coupling in 2'-fluoroflavonol, rather than overlap of proximate electronic clouds, such as in 2-fluorophenol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.