Abstract
Semantic segmentation is a basic and long-standing research area. Depth images can enrich RGB (red-green-blue) images with their rich geometric information, so as to achieve accurate semantic segmentation. However, redundant information exists in RGB and depth images, and its handling has become an important problem. Filter group convolutions are widely used because they can eliminate redundant information and reduce computational complexity and parameter cost. Similarly, we propose a feature grouping mechanism network (FGMNet) using an attention mechanism and contextual information extraction for indoor scene semantic segmentation. First, modules of pyramid feature grouping attention and feature augmentation highlight the most useful information obtained by combining RGB and depth features. The enhanced features are then fed into a feature grouping contextual module. Results from extensive experiments on well-known indoor scene semantic segmentation datasets, NYUDv2 and SUN RGB-D, indicate that our FGMNet outperforms the most advanced existing methods in RGB-D semantic segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.