Abstract

Receptor tyrosine kinases (RTKs) conduct biochemical signals upon dimerization in the membrane plane. While RTKs are generally known to be activated in response to ligand binding, many of these receptors are capable of forming unliganded dimers that are likely important intermediates in the signaling process. All 58 RTKs consist of an extracellular (EC) domain, a transmembrane (TM) domain, and an intracellular domain that includes a juxtamembrane (JM) sequence and a kinase domain. Here we investigate directly the effect of the JM domain on unliganded dimer stability of FGFR3, a receptor that is critically important for skeletal development. The data suggest that FGFR3 unliganded dimers are stabilized by receptor–receptor contacts that involve the JM domains. The contribution is significant, as it is similar in magnitude to the stabilizing contribution of a pathogenic mutation and the repulsive contribution of the EC domain. Furthermore, we show that the effects of the JM domain and a TM pathogenic mutation on unliganded FGFR3 dimer stability are additive. We observe that the JM-mediated dimer stabilization occurs when the JM domain is linked to FGFR3 TM domain and not simply anchored to the plasma membrane. These results point to a coordinated stabilization of the unliganded dimeric state of FGFR3 by its JM and TM domains via a mechanism that is distinctly different from the case of another well studied receptor, EGFR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.