Abstract
A new redox-sensitive poly(ethylene glycol) (PEG)-based gene vector specially designed to target fibroblast growth factor receptors (FGFRs) was developed by host-guest supramolecular complexation. The new vector was designed as follows: 1) A host segment was consisted of β-cyclodextrin-crosslinked low molecular polyethylenimine (PEI) conjugated with MC11 peptide (MQLPLATGGGC) that can target FGFRs, being termed as MC11-PEI-β-cyclodextrin (MPC); 2) A guest segment is consisted of PEG and adamantyl group linked by a disulfide bond, the adamantyl-SS-PEG (Ad-SS-PEG); and 3) PEGylation of MPC by supramolecular complexation between MPC and Ad-SS-PEG to generate MPC/Ad-SS-PEG polycation, where the PEG chains can stabilize the DNA polyplexes extracellularly but can be readily cleavable intracellularly. It was found that the MPC/Ad-SS-PEG complexes could efficiently condense pDNA into nanoparticles around 100–200 nm, and were able to effectively stabilize polyplexes against salt- or BSA-induced aggregation. The MPC/Ad-SS-PEG polyplexes were more readily to dissociate with the aid of heparin in the presence of 5 mm DTT. In vitro gene transfection and cytotoxicity experiments in different carcinoma cell lines expressing FGFRs showed that MPC/Ad-SS-PEG could mediate significantly higher transfection efficiency than MPC complexed with adamantyl-PEG (MPC/Ad-PEG), which has no disulfide linkage and is non-PEG-detachable. Furthermore, confocal laser scanning microscopy study indicated that MPC/Ad-SS-PEG polyplexes could mediate much more efficient endosomal escape than stably shield MPC/Ad-PEG polyplexes at 12 h post-transfection. Importantly, MPC/Ad-SS-PEG was also able to efficiently mediate tumor-targeted gene delivery in the tumor-bearing mouse model after systemic injection in vivo. These results suggest that the MPC/Ad-SS-PEG systems could be a safe and efficient non-viral vector for FGFR-mediated targeted gene delivery for cancer gene therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.