Abstract

The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2+/S252W and Fgfr2+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.

Highlights

  • Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis by controlling levels of cell proliferation, differentiation, migration, adhesion and death [1,2]

  • Patterns of skull morphological integration (MI) are not disrupted by Apert syndrome Fgfr2 mutations

  • The pooled Partial Least Squares analysis (PLS) analysis including all mice was used to test whether Apert syndrome Fgfr2 mutations alter the normal pattern of MI within the skull

Read more

Summary

Introduction

Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis by controlling levels of cell proliferation, differentiation, migration, adhesion and death [1,2]. FGF ligands and their receptors are differentially expressed in these cranial regions and tissues mediating cell communication and interaction [10], so it is likely that besides malformations within each structure, altered expression of FGF/FGFR signaling may lead to changes in anatomical relationships among skull regions. Such changes can be evaluated by the comparative analysis of patterns of morphological integration [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call