Abstract

Donation after brain death (DBD) grafts are associated with reduced graft quality and function post liver transplantation (LT). We aimed to elucidate i) the impact of FGF15 levels on DBD grafts; ii) whether this impact resulted from altered intestinal FXR-FGF15; iii) whether administration of FGF15 to donors after brain death could confer a benefit on graft function post LT; and iv) whether FGF15 affects bile acid (BA) accumulation. Steatotic and non-steatotic grafts from DBD donors and donors without brain death were transplanted in rats. FGF15 was administered alone or combined with either a BA (cholic acid) or a YAP inhibitor. Brain death induced intestinal damage and downregulation of FXR. The resulting reduced intestinal FGF15 was associated with low hepatic FGF15 levels, liver damage and regenerative failure. Hepatic FGFR4-Klb - the receptor for FGF15 - was downregulated whereas CYP7A1 was overexpressed, resulting in BA accumulation. FGF15 administration to DBD donors increased hepatic FGFR4-Klb, reduced CYP7A1 and normalized BA levels. The benefit of FGF15 on liver damage was reversed by cholic acid, whereas its positive effect on regeneration was maintained. YAP signaling in DBD donors was activated after FGF15 treatment. When a YAP inhibitor was administered, thebenefits of FGF15 on regeneration were abolished, whereas itspositive effect on hepatic damage remained. Neither the Hippo-YAP-BA nor the BA-IQGAP1-YAP axis was involved in the benefits of FGF15. Alterations in the gut-liver axis contribute to the reduced quality of DBD grafts and the associated pathophysiology of LT. FGF15 pre-treatment in DBD donors protected against damage and promoted cell proliferation. After brain death, potential liver donors have reduced intestinal FXR, which is associated with reduced intestinal, circulatory and hepatic levels of FGF15. A similar reduction in the cell-surface receptor complex Fgfr4/Klb is observed, whereas CYP7A1 is overexpressed; together, these molecular events result in the dangerous accumulation of bile acids, leading to damage and regenerative failure in brain dead donor grafts. Herein, we demonstrate that when such donors receive appropriate doses of FGF15, CYP7A1 levels and hepatic bile acid toxicity are reduced, and liver regeneration is promoted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call