Abstract

Fibroblast growth factor-12 (FGF12) has been reported to play important role in regulating heart diseases. We aimed to explore the role of FGF12 in doxorubicin (DOX)-induced myocardial injury. DOX-induced mice and DOX-induced HL-1 cells were used as the myocardial injury in vivo and in vitro. Then, FGF12, Anp, Bnp, and Myh7 expression was detected. The pathological injury in myocardium tissue was observed by H&E staining. The levels of markers related to myocardial damage and oxidative stress were assessed. Then, immunohistochemistry and immunofluorescence staining were used to detect FGF12 and 4-HNE expression. Ferroptosis were detected by Prussian blue staining and western blot. The FGFR1/AMPK/NRF2 signaling was measured by western blot. FGF12 expression was downregulated in DOX-induced mice myocardium tissues. FGF12 overexpression alleviated DOX-induced myocardial tissue pathological injury and reduced Anp, Bnp, and Myh7 expression. Additionally, the levels of CK-MB, LDH and cTnT in serum were decreased after FGF12 upregulation in DOX-induced mice. Moreover, FGF12 overexpression reduced the levels of ROS, MDA, and 4-HNE but increased SOD and GSH-Px activities. Meanwhile, FGF12 led to less deposition of iron ion, decreased ACSL4, PTGS2 and increased GPX4, FTH1 expression. Additionally, FGF12 activated the expressions of FGFR1, p-AMPK, and NRF2. Moreover, FGFR1 silencing reversed the protective effects of FGF12 overexpression on cell viability, oxidative stress, ferroptosis, and FGFR1/AMPK/NRF2 pathway. To sum up, FGF12 inhibited mitochondria-dependent ferroptosis in cardiomyocytes induced by DOX through activation of FGFR1/AMPK/NRF2 signaling. These findings clarify a new mechanism of DOX-induced cardiac injury and provide a promising target to limit the disease development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call