Abstract
Promoting cardiomyocyte renewal represents a major therapeutic approach for heart regeneration and repair. Our study aims to investigate the relevance of FGF10 as a potential target for heart regeneration. Our results first reveal that Fgf10 levels are up-regulated in the injured ventricle after MI. Adult mice with reduced Fgf10 expression subjected to MI display impaired cardiomyocyte proliferation and enhanced cardiac fibrosis, leading to a worsened cardiac function and remodelling post-MI. In contrast, conditional Fgf10 overexpression post-MI revealed that, by enhancing cardiomyocyte proliferation and preventing scar-promoting myofibroblast activation, FGF10 preserves cardiac remodelling and function. Moreover, FGF10 activates major regenerative pathways including the regulation of Meis1 expression levels, the Hippo signalling pathway and a pro-glycolytic metabolic switch. Finally, we demonstrate that elevated FGF10 levels in failing human hearts correlate with reduced fibrosis and enhanced cardiomyocyte proliferation. Altogether, our study shows that FGF10 promotes cardiac regeneration and repair through two cellular mechanisms: elevating cardiomyocyte renewal and limiting fibrosis. This study thus identifies FGF10 as a clinically relevant target for heart regeneration and repair in man.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.