Abstract

Mucus secretion and mucociliary clearance are crucial processes required to maintain pulmonary homeostasis. In the trachea and nasal passages, mucus is secreted by submucosal glands (SMGs) that line the airway, with an additional contribution from goblet cells of the surface airway epithelium. The SMG mucus is rich in mucins and antimicrobial enzymes. Defective tracheal SMGs contribute to hyper-secretory respiratory diseases, such as cystic fibrosis, asthma, and chronic obstructive pulmonary disease, however little is known about the signals that regulate their morphogenesis and patterning. Here, we show that Fgf10 is essential for the normal development of murine tracheal SMGs, with gland development arresting at the early bud stage in the absence of FGF10 signalling. As Fgf10 knockout mice are lethal at birth, inducible knockdown of Fgf10 at late embryonic stages was used to follow postnatal gland formation, confirming the essential role of FGF10 in SMG development. In heterozygous Fgf10 mice the tracheal glands formed but with altered morphology and restricted distribution. The reduction in SMG branching in Fgf10 heterozygous mice was not rescued with time and resulted in a reduction in overall tracheal mucus secretion. Fgf10 is therefore a key signal in SMG development, influencing both the number of glands and extent of branching morphogenesis, and is likely, therefore, to play a role in aspects of SMG-dependent respiratory health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.