Abstract

BackgroundEpithelial invagination is important for initiation of ectodermal organogenesis. Although many factors regulate ectodermal organogenesis, there is not any report about their functions in real-time study. Electric cell-substrate impedance sensing (ECIS), a non-invasive, real-time surveillance system, had been used to detect changes in organ cell layer thickness through quantitative monitoring of the impedance of a cell-to-microelectrode interface over time. It was shown to be a good method for identifying significant real-time changes of cells. The purpose of this study is to establish a combined bioengineered organ-ECIS model for investigating the real time effects of fibroblast growth factor-9 (FGF-9) on epithelial invagination in bioengineered ectodermal organs. We dissected epithelial and mesenchymal cells from stage E14.5 murine molar tooth germs and identified the real-time effects of FGF-9 on epithelial-mesenchymal interactions using this combined bioengineered organ-ECIS model.ResultsMeasurement of bioengineered ectodermal organ thickness showed that Fibroblast growth factor-9 (FGF-9) accelerates epithelial invagination in reaggregated mesenchymal cell layer within 3 days. Gene expression analysis revealed that FGF-9 stimulates and sustains early Ameloblastin and Amelogenin expression during odontogenesis.ConclusionsThis is the first real-time study to show that, FGF-9 plays an important role in epithelial invagination and initiates ectodermal organogenesis. Based on these findings, we suggest FGF-9 can be applied for further study in ectodermal organ regeneration, and we also proposed that the ‘FGF-BMP balancing system’ is important for manipulating the morphogenesis of ectodermal organs. The combined bioengineered organ-ECIS model is a promising method for ectodermal organ engineering and regeneration research.

Highlights

  • Epithelial invagination is important for initiation of ectodermal organogenesis

  • Studies have shown that Fibroblast growth factor (FGF)-8 and fibroblast growth factor-9 (FGF-9) are expressed within the murine molar epithelium: FGF-8 has a specific role in multicuspid odontogenesis [13,14]; in this study, we investigated the role of FGF-9, present within the oral epithelium of the first branchial arch at stage E10

  • Preliminary results showed that FGF-9 can induce early, significant Ameloblastin, Amelogenin and Osteocalcin expression in mesenchymal cells cultured with FGF-9 (Additional file 1)

Read more

Summary

Introduction

Many factors regulate ectodermal organogenesis, there is not any report about their functions in real-time study. The purpose of this study is to establish a combined bioengineered organ-ECIS model for investigating the real time effects of fibroblast growth factor-9 (FGF-9) on epithelial invagination in bioengineered ectodermal organs. We dissected epithelial and mesenchymal cells from stage E14.5 murine molar tooth germs and identified the real-time effects of FGF-9 on epithelial-mesenchymal interactions using this combined bioengineered organ-ECIS model. Many factors regulate ectodermal organogenesis, observing their functions in real-time is difficult. The multipotency of embryonic stem cells makes creation of a non-invasive, noninductive environment for the observation of specific growth factor functions within ectodermal organ development challenging. Ectodermal organs are greatly affected by their in vivo environment and its inherent regulating factors

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.