Abstract

AimsAccumulating evidence elucidates the biological significance of long non-coding RNA (lncRNAs) in tumorigenesis and development. FGD5 antisense RNA 1 (FGD5-AS1) was previously revealed as an oncogene in several types of malignancies. However, the roles of FGD5-AS1 in glioblastoma (GBM) and its potential molecular mechanisms remain unclear. Materials and methodsThe expression of FGD5-AS1, miR-129-5p, and heterogeneous nuclear ribonucleoprotein K (HNRNPK) mRNA were measured by qRT-PCR. Cell proliferation, invasion and apoptosis were determined by MTT, colony formation, transwell and flow cytometry assays. The protein levels of Ki-67, HNRNPK and Wnt signaling-associated genes were examined by western blot assay. The possible action mechanism of FGD5-AS1 was detected by bioinformatic tools, luciferase reporter, RIP and TOP/FOP Flash reporter assays. A nude mouse xenograft model was built to analyze the function of FGD5-AS1 in vivo. Key findingsFGD5-AS1 expression was increased in GBM tumor tissues and cells. Knockdown of FGD5-AS1 inhibited cell proliferation and invasion in vitro, and slowed tumor growth in vivo. Mechanistically, FGD5-AS1 served as a sponge of miR-129-5p to relieve its suppression on HNRNPK. Moreover, down-regulation of HNRNPK repressed cell proliferation and invasion, while enhanced apoptosis. Additionally, si-FGD5-AS1-mediated suppression of cell proliferation and invasion was obviously reversed by the decrease of miR-129-5p or restoration of HNRNPK. Furthermore, FGD5-AS1 promoted cell growth and invasion by stimulating Wnt/β-catenin signaling via regulation of miR-129-5p/HNRNPK. SignificanceFGD5-AS1 promoted GBM progression at least partly by regulating miR-129-5p/HNRNPK to activate Wnt/β-catenin signaling, suggesting the potential of FGD5-AS1 as a candidate target to improve GBM therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call