Abstract

Angiogenesis is required in embryonic development and tissue repair in the adult. Vascular endothelial growth factor (VEGF) initiates angiogenesis, and VEGF or its receptor is targeted therapeutically to block pathological angiogenesis. Additional pro-angiogenic cues, such as CXCL12 acting via the CXCR4 receptor, co-operate with VEGF/VEGFR2 to cue vascular patterning. We studied the role of FGD5, an endothelial Rho GTP/GDP exchange factor (RhoGEF), to regulate CXCR4-dependent signals in the endothelial cell (EC). Patient-derived renal cell carcinomas produce a complex milieu of growth factors that stimulated sprouting angiogenesis and endothelial tip cell differentiation ex vivo that was blocked by EC FGD5loss. In a simplified model, CXCL12 augmented sprouting and tip gene expression under conditions where VEGF was limiting. CXCL12-stimulated tip cell differentiation was dependent on PI3kinase (PI3K)-β activity. Knockdown of EC FGD5 abolished CXCR4signaling to PI3K-β and Akt. Further, inhibition of Rac1, a Rho GTPase required for PI3K-β activity, recapitulated the signaling defects of FGD5 deficiency, suggesting that FGD5may regulate PI3K-β activity through Rac1. Overexpression of a RhoGEF deficient, Dbl domain-deleted FGD5mutant reduced CXCL12-stimulated Akt phosphorylation and failed to rescue PI3K signaling in native FGD5-deficient EC, indicating that FGD5 RhoGEF activity is required for FDG5 function. Endothelial expression of mutant PI3K-β with an inactivated Rho binding domain confirmed that CXCL12-stimulated PI3K activity in EC requires Rac1-GTP co-regulation. Together, this data identify the role of FGD5 to generate Rac1-GTP to regulate pro-angiogenic CXCR4-dependent PI3K-β signaling in EC. Inhibition of FGD5 activity may complement current angiogenesis inhibitor drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call