Abstract

This paper presents the application of a fast Fourier transform (FFT) based method to solve two phase field models designed to simulate crack growth of strongly anisotropic materials in the brittle regime. By leveraging the ability of the FFT-based solver to generate solutions with higher-order and global continuities, we design two simple algorithms to capture the complex fracture patterns (e.g. sawtooth, and curved crack growth) common in materials with strongly anisotropic surface energy via the multi-phase-field and high-order phase-field frameworks. A staggered operator-split solver is used where both the balance of linear momentum and the phase field governing equations are formulated in the periodic domain. The unit phase field of the initial failure region is prescribed by the penalty method to alleviate the sharp material contrast between the initial failure region and the base material. The discrete frequency vectors are generalized to estimate the second and fourth order gradients such that the Gibbs effect near shape interfaces or jump conditions can be suppressed. Furthermore, a preconditioner is adopted to improve the convergence rate of the iterative linear solver. Three numerical experiments are used to systematically compare the performance of the FFT-based method in the multi-phase-field and high-order phase-field frameworks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.