Abstract

The string matching with mismatches problem requires finding the Hamming distance between a pattern P of length m and every length m substring of text T with length n. Fischer and Paterson's FFT-based algorithm solves the problem without error in O ( σ n log m ) , where σ is the size of the alphabet Σ [SIAM–AMS Proc. 7 (1973) 113–125]. However, this in the worst case reduces to O ( n m log m ) . Atallah, Chyzak and Dumas used the idea of randomly mapping the letters of the alphabet to complex roots of unity to estimate the score vector in time O ( n log m ) [Algorithmica 29 (2001) 468–486]. We show that the algorithm's score variance can be substantially lowered by using a bijective mapping, and specifically to zero in the case of binary and ternary alphabets. This result is extended via alphabet remappings to deterministically solve the string matching with mismatches problem with a constant factor of 2 improvement over Fischer–Paterson's method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.