Abstract
The requirement for high capacity power conditioning unit (PCU) has increased for application in large-scale solar photovoltaic (PV) plant for optimisation of the balance of system cost. For high power applications, one of the most important criteria for designing of PCU is to have lower switching losses to minimise the heat generated in the power switching devices. Conventionally, PCU utilises traditional two-level or three-level voltage source converter (VSC) topology with high-frequency switching techniques and due to this, they have lower conversion efficiency and higher device switching losses. In this study, fundamental frequency switching (FFS) modulated three-level neutral point clamp (3L-NPC) VSC is used for MW scale PCU, as they have lower switching losses, higher conversion efficiency and higher AC/DC voltage ratio. The 3L-NPC VSC generates lower order current harmonics, which are mitigated by using different phase-shifted 12-pulse PCU transformers located at different pooling location inside solar PV plant. The PV plant configuration for a 40 MW (AC) plant capacity is developed in the Matlab/Simulink environment and implemented in real-time simulator OPAL-RT to validate the proposed concept. Harmonics, steady-state and dynamic performances are demonstrated at constant and changing solar irradiance levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.