Abstract

In this Letter, a sensor consisting of a fiber Bragg grating (FBG) and a fiber Fabry–Perot interferometer (FFPI) sensor is developed to measure the coefficient of thermal expansion (CTE) and the thermo-optical coefficient (TOC) of a silica-based optical fiber at cryogenic temperatures. The FFPI is fabricated by welding together two acid-etched fibers. The temperature performance of the FFPI-FBG hybrid sensor is studied in the temperature range of 30–273 K. The CTE and TOC of the optical fiber at cryogenic temperatures are derived analytically and verified by experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call