Abstract
We study the phase diagram of an imbalanced two-component Fermi gas in optical lattices of 1–3 dimensions (1D–3D), considering the possibilities of the Fulde–Ferrel–Larkin–Ovchinnikov (FFLO), Sarma/breached pair, BCS and normal states as well as phase separation, at finite and zero temperatures. In particular, phase diagrams with respect to average chemical potential and the chemical potential difference of the two components are considered, because this gives the essential information about the shell structures of phases that will occur in the presence of an additional (harmonic) confinement. These phase diagrams in 1D, 2D and 3D show in a striking way the effect of Van Hove singularities on the FFLO state. Although we focus on population imbalanced gases, the results are relevant also for the (effective) mass imbalanced case. We demonstrate by LDA calculations that various shell structures such as normal–FFLO–BCS–FFLO–normal, or FFLO–normal, are possible in presence of a background harmonic trap. The phases are reflected in noise correlations: especially in 1D the unpaired atoms leave a clear signature of the FFLO state as a zero-correlation area (‘breach’) within the Fermi sea. This strong signature occurs both for a 1D lattice as well as for a 1D continuum. We also discuss the effect of Hartree energies and the Gorkov correction on the phase diagrams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.