Abstract

To solve the problem of poor localization accuracy and robustness of visual simultaneous localization and mapping (SLAM) systems in highly dynamic environments, this paper proposes a dynamic visual SLAM algorithm called FFD-SLAM that fuses the target detection network with the optical flow method. The algorithm considers ORB-SLAM2 as the basic framework, joins the semantic thread in parallel with its tracking thread, initially obtains the set of feature points through the real-time detection of dynamic objects in the environment through YOLOv5 in the semantic thread, then filters the set of feature points obtained in the semantic thread through the optical flow module, and finally utilizes the remaining static feature points for the matching calculation. Experiments showed that the proposed algorithm showed an improvement of approximately 97% in the localization accuracy compared with the ORB-SLAM2 algorithm in a highly dynamic environment, which effectively improves the localization accuracy and robustness of the system. The proposed algorithm also showed a higher real-time performance compared with some excellent dynamic SLAM algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call