Abstract

In the development of the olfactory system, olfactory receptor neurons (ORNs) project their axons from the olfactory epithelium (OE) to the olfactory bulb (OB). The surface of the OB is covered by the central nervous system (CNS) basal lamina. To establish this connection, pioneer axons of the ORNs penetrate the CNS basal lamina at embryonic day 12.5 in mice. The importance of this penetration is highlighted by the Kallmann syndrome. However, little has been known about the molecular mechanism underlying this penetration process. Fezf1 (also called as Fez, Zfp312-like, and 3110069A13Rik) is a C2H2-type zinc-finger gene expressed in the OE and hypothalamic region in mice. In Fezf1-deficient mice, ORN axons (olfactory axons) do not reach the OB. Here we demonstrate that Fezf1-deficient olfactory axons do not penetrate the CNS basal lamina in vivo, and the penetration activity of the axons in Matrigel is impaired in vitro. Coculture experiments using the OE and OB reveal that axonal projection of ORNs is rescued in Fezf1-deficient mice in which the meninges including the CNS basal lamina are removed from the mutant OB. These data indicate that Fezf1 is required for the penetration of olfactory axons through the CNS basal lamina before they innervate the OB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.