Abstract

We study a class of universal Feynman integrals which appear in four-dimensional holomorphic theories. We recast the integrals as the Fourier transform of a certain polytope in the space of loop momenta (a.k.a. the “Operatope”). We derive a set of quadratic recursion relations which appear to fully determine the final answer. Our strategy can be applied to a very general class of twisted supersymmetric quantum field theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.