Abstract
Fexofenadine is a recommended in vivo probe drug for phenotyping P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/3 transporter activities. This study evaluated a limited sampling strategy using a population pharmacokinetic approach to estimate plasma fexofenadine exposure as an index of P-gp and OATP activities. In a previous study, a single oral dose of fexofenadine (120 mg) was administered alone or in combination with grapefruit juice, Panax ginseng , or Echinacea purpurea to healthy adult participants. Serial plasma samples were collected up to 72 hours after administration and fexofenadine concentrations were measured. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling. Limited sampling models (LSMs) using single and 2-timepoint fexofenadine concentrations were compared with full profiles from intense sampling using empirical Bayesian post hoc estimations of systemic exposure derived from the population pharmacokinetic model. Predefined criteria for LSM selection and validation included a coefficient of determination (R 2 ) ≥ 0.90, relative percent mean prediction error ≥ -5 to ≤5%, relative percent mean absolute error ≤ 10%, and relative percent root mean square error ≤ 15%. Fexofenadine concentrations (n = 1520) were well described using a 2-compartment model. Grapefruit juice decreased the relative oral bioavailability of fexofenadine by 25%, whereas P. ginseng and E. purpurea had no effect. All the evaluated single timepoint fexofenadine LSMs showed unacceptable percent mean prediction error, percent mean absolute error, and/or percent root mean square error. Although adding a second time point improved precision, the predefined criteria were not met. Identifying novel fexofenadine LSMs to estimate P-gp and OATP1B1/3 activities in healthy adults for future transporter-mediated drug-drug interaction studies remains elusive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.