Abstract

The biological slow filtration reactor (BSFR) process has been found to be moderately effective for the removal of refractory dissolved organic matter (DOM) in the treatment of reused water. In this study, bench scale experiments were conducted using a mixture of landscape water and concentrated landfill leachate as feed water, to compare a novel iron oxide (FexO)/FeNC modified activated carbon (FexO@AC) packed BSFR, with a conventional activated carbon packed BSFR (AC-BSFR), operated in parallel. The results showed that the FexO@AC packed BSFR had a refractory DOM removal rate of 90%, operated at a hydraulic retention time (HRT) of 10 h at room temperature for 30 weeks, while under the same conditions the removal by the AC-BSFR was only 70%. As a consequence, the treatment by the FexO@AC packed BSFR substantially reduced the formation potential of trihalomethanes, and to a less extent, haloacetic acids. The modification of FexO/FeNC media raised the conductivity and the oxygen reduction reaction (ORR) efficiency of the AC media to accelerate the anaerobic digestion by consuming the electrons that are generated by anaerobic digestion itself, which lead to the marked improvement in refractory DOM removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.