Abstract
The ability to reconstruct high-quality tomographic images from a smaller number of projections than is usually used could reduce imaging time for many nuclear-medicine studies. This would particularly benefit studies such as cardiac SPECT where patient motion during long acquisitions can lead to motion artifacts in the reconstructed images. To this end, the authors have investigated sinogram pre-processing techniques designed to enable filtered backprojection (FBP) to produce high-quality reconstructions from a small number of views. Each projection is first smoothed by performing roughness-penalized nonparametric regression using a generalized linear model that explicitly accounts for the Poisson statistics of the data. The resulting fit curves are natural cubic splines. After smoothing, additional angular views are generated using periodic spline interpolation, and images are reconstructed using FBP. The algorithm was tested on data from SPECT studies of a cardiac phantom placed at various radial offsets to enable examination of the algorithm's dependence on the radial extent of the object being imaged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.