Abstract

Increasing demand for high data transmission rates and bandwidth availability driven by the rapid development of the broadband services becomes challenging in the context of constraints imposed by nowadays exploited telecommunication optical fibers. Based on single-mode fibers and multiplexing in the wavelength domain (wavelength division multiplexing, WDM), the current technology seems to have reached its fundamental limits. At present, two promising technologies are a subject of intensive research. One of them is the increase of the data transmission through multiplying the number of fiber cores, thus implementing the concept of Multi-Core Fibers (MCF), where each core is used as a separate data transmission channel. The second widely investigated technique is based on the idea of mode division multiplexing (MDM), where different transverse modes of a Few-Mode Fiber (FMF) can be used as different carriers for data channels. In this work, we demonstrate the results of R&D works and the comprehensive tests of the few-mode fibers developed within the project NMKM+. Developed few-mode fibers (both passive and active) and their commercially available counterparts have been tested with respect of transmission parameters and applicability to the real telecom systems. In particular, guided mode profiles, numerical apertures, OTDR, and dispersion characteristics for the passive fibers have been recorded and compared. Also, methods of selective excitation and detection of singular modes have been discussed and partially verified. The results of data transmission experiments have been performed and discussed with respect to the quality of transmitted signals. These have been complemented by the amplification experiments with the use of erbium-doped few-mode fibers in “classical” and microstructural geometry. The results were studied and analyzed, showing the potential for future optimization. Acknowledgement: This work has received support from the National Centre for Research and Development through project NMKM+ (TECHMATSTRATEG1/348438/16/NCBR/2018).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.