Abstract

Protein glycation and formation of advanced glycation end products is associated with several diseases resulting from high blood glucose concentrations. Plasma albumin is directly exposed to circulating glucose concentrations and is therefore at greater risk of glycation than hemoglobin. As plasma glucose concentrations in birds are 1.5-2 times higher than mammals of similar mass, avian albumin may be particularly at risk of glycation. Thus, the goal of the present study was to compare the in vitro formation of glycated albumin in chicken serum albumin (CSA) and bovine serum albumin (BSA) exposed to a range of glucose concentrations over a 16-week period. The level of glycation for CSA and BSA was quantified using boronate affinity columns to separate glycated albumin from non-glycated albumin and calculating the difference in protein concentration of each sample. The results indicate that CSA is glycated to a lesser degree than BSA when the albumins are exposed to increasing concentrations of glucose (38.8-500mM). This was most apparent at week sixteen (500mM glucose) where BSA expressed a higher degree of glycation (37.8 ± 0.76%) compared to CSA (19.7 ± 1.06%, P < 0.05). Additionally, percent glycation at week sixteen was significantly higher than the glucose-free solutions for both BSA and CSA, indicating that glycation is glucose-dependent. Analyses of the protein structures suggest that the relative resistance of CSA to glycation may be due to fewer lysine residues and variations in protein folding that shield more lysine residues from the plasma. Moreover, comparisons of reconstructed ancestral albumin sequences show that the ancestor of birds had 6-8 fewer lysine residues compared to that of mammals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call