Abstract
Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of “training” problem instances, which is often referred to as PAP construction. However, compared to the traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This article proposes a novel competitive co-evolution scheme, named co-evolution of parameterized search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this article. Two concrete algorithms, namely, CEPS-TSP and CEPS-VRPSPDTW, are presented for the traveling salesman problem (TSP) and the vehicle routing problem with simultaneous pickup-delivery and time windows (VRPSPDTW), respectively. The experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.