Abstract
With increased reliance on Internet based technologies, cyberattacks compromising users’ sensitive data are becoming more prevalent. The scale and frequency of these attacks are escalating rapidly, affecting systems and devices connected to the Internet. The traditional defense mechanisms may not be sufficiently equipped to handle the complex and ever-changing new threats. The significant breakthroughs in the machine learning methods including deep learning, had attracted interests from the cybersecurity research community for further enhancements in the existing anomaly detection methods. Unfortunately, collecting labelled anomaly data for all new evolving and sophisticated attacks is not practical. Training and tuning the machine learning model for anomaly detection using only a handful of labelled data samples is a pragmatic approach. Therefore, few-shot weakly supervised anomaly detection is an encouraging research direction. In this paper, we propose an enhancement to an existing few-shot weakly-supervised deep learning anomaly detection framework. This framework incorporates data augmentation, representation learning and ordinal regression. We then evaluated and showed the performance of our implemented framework on three benchmark datasets: NSL-KDD, CIC-IDS2018, and TON_IoT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.