Abstract
Short utterance speaker verification (SV) in the actual application is the task of accepting or rejecting the identity claim of a speaker based on a few enrollment utterances. Traditional methods have used deep neural networks to extract speaker representations for verification. Recently, several meta-learning approaches have learned a deep distance metric to distinguish speakers within meta-tasks. Among them, a prototypical network learns a metric space that may be used to compute the distance to the prototype center of speakers, in order to classify speaker identity. We use emphasized channel attention, propagation and aggregation in TDNN (ECAPA-TDNN) to implement the necessary function for the prototypical network, which is a nonlinear mapping from the input space to the metric space for either few-shot SV task. In addition, optimizing only for speakers in given meta-tasks cannot be sufficient to learn distinctive speaker features. Thus, we used an episodic training strategy, in which the classes of the support and query sets correspond to the classes of the entire training set, further improving the model performance. The proposed model outperforms comparison models on the VoxCeleb1 dataset and has a wide range of practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.