Abstract

Palmprint is one of the discriminant biometric modalities of humans. Recently, deep learning-based palmprint recognition algorithms have improved the accuracy and robustness of recognition results to a new level. Most of them require a large amount of labeled training samples to guarantee satisfactory performance. However, getting enough labeled data is difficult due to time consumption and privacy issues. Therefore, in this article, a novel meta-Siamese network (MSN) is proposed to exploit few-shot learning for small-sample palmprint recognition. During each episode-based training iteration, a few images are selected as sample and query sets to simulate the support and testing sets in the test set. Specifically, the model is trained episodically with a flexible framework to learn both the feature embedding and deep similarity metric function. In addition, two distance-based losses are introduced to assist the optimization. After training, the model can learn the ability to get similarity scores between two images for few-shot testing. Adequate experiments conducted on several constrained and unconstrained benchmark palmprint databases show that MSN can obtain competitive improvements compared with baseline methods, where the best accuracy can be up to 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.