Abstract
Graph computation via Graph Neural Networks (GNNs) is emerging as a pivotal approach for addressing the challenges in image classification tasks. This paper introduces a novel strategy for image classification using minimal labeled data from the mini-ImageNet database. The primary contributions include the development of an innovative Fine-Grained Feature Descriptor (FGFD) module. Following this, the GNN is employed at a more granular level to enhance image classification efficiency. Additionally, ablation studies were conducted in conjunction with existing state-of-the-art systems for few-shot image classification. Comparative analyses were performed, and the simulation results demonstrate that the proposed method significantly improves classification accuracy over traditional few-shot image classification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.