Abstract
BackgroundIn recent years, researchers have made significant strides in understanding the heterogeneity of breast cancer and its various subtypes. However, the wealth of genomic and proteomic data available today necessitates efficient frameworks, instruments, and computational tools for meaningful analysis. Despite its success as a prognostic tool, the PAM50 gene signature’s reliance on many genes presents challenges in terms of cost and complexity. Consequently, there is a need for more efficient methods to classify breast cancer subtypes using a reduced gene set accurately.ResultsThis study explores the potential of achieving precise breast cancer subtype categorization using a reduced gene set derived from the PAM50 gene signature. By employing a “Few-Shot Genes Selection” method, we randomly select smaller subsets from PAM50 and evaluate their performance using metrics and a linear model, specifically the Support Vector Machine (SVM) classifier. In addition, we aim to assess whether a more compact gene set can maintain performance while simplifying the classification process. Our findings demonstrate that certain reduced gene subsets can perform comparable or superior to the full PAM50 gene signature.ConclusionsThe identified gene subsets, with 36 genes, have the potential to contribute to the development of more cost-effective and streamlined diagnostic tools in breast cancer research and clinical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.