Abstract

The effectiveness of deep learning models is greatly dependent on the availability of a vast amount of labeled data. However, in the realm of surface defect classification, acquiring and annotating defect samples proves to be quite challenging. Consequently, accurately predicting defect types with only a limited number of labeled samples has emerged as a prominent research focus in recent years. Few-shot learning, which leverages a restricted sample set in the support set, can effectively predict the categories of unlabeled samples in the query set. This approach is particularly well-suited for defect classification scenarios. In this article, we propose a transductive few-shot surface defect classification method, which using both the instance-level relations and distribution-level relations in each few-shot learning task. Furthermore, we calculate class center features in transductive manner and incorporate them into the feature aggregation operation to rectify the positioning of edge samples in the mapping space. This adjustment aims to minimize the distance between samples of the same category, thereby mitigating the influence of unlabeled samples at category boundary on classification accuracy. Experimental results on the public dataset show the outstanding performance of our proposed approach compared to the state-of-the-art methods in the few-shot learning settings. Our code is available at https://github.com/Harry10459/CIDnet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call