Abstract
Space-division multiplexing allows an increase of link capacity by using either multicore or single-core few-mode (FM) optical fibers. In the case of FM systems, each mode carries its own data stream and long-haul transmission can be hampered by the use of conventional erbium-doped fiber amplifiers (EDFAs), since because of distinct field profile configurations, each mode experiences a different value of optical gain. The role of the FM-EDFA designer, usually done by solving rate and propagation equations, is to define both the fiber cross-section and the pumping configuration to provide the best possible mode equalization of optical gain and noise figure. An optimization method is proposed here based on the definition of a figure of merit related to the equalization of the pump-mode signal overlap integral, significantly reducing computation time and allowing a multiobjective optimization approach. The results obtained were validated against the solution provided by the full set of rate and propagation equations and we conducted an FM-EDFA optimization case study. Our double-ring Er doping profile design requires a single 180-mW LP11 pump to provide a mean gain of 21.3 dB, within 0.6 dB of equalization for each of the four modes considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.