Abstract

Studies on highly efficient noble-metal-free catalysts are regarded as an important task for H2 production by water-splitting. MoS2/ZnCdS/ZnS dual heterostructures were successfully prepared with respective supernatant MoS2 colloidal solutions (called M/ZC/Z) and MoS2 precipitates (M(p)/ZC/Z). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the M/ZC/Z sample showed that ZnS nanosheets were decorated with ZnCdS nanorods and few-layered MoS2. Then, photocatalytic hydrogen production study was performed and the results showed that the M/ZC/Z sample has a H2 evolution rate of up to 79.3 mmol g–1 h–1 under visible light irradiation with an apparent quantum efficiency of 47.9% at 420 nm with noble-metal-free catalysts, which is nearly 5 times that of the M(p)/ZC/Z sample (15.7 mmol g–1 h–1) and approximately 9 times that of the ZC/Z sample (8.98 mmol g–1 h–1). Cycle tests showed that M/ZC/Z is stable and reusable. Without sacrificial agents, the production rates for hydrogen and oxygen evolution were obtained as 3.15 and 1.55 mmol g–1 h–1, respectively. Time-resolved photoluminescence spectra revealed that the well-matched structure is effective in the separation and transfer of photogenerated electron and hole pairs, leading to the enhancement of the photocatalytic H2 production activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.