Abstract

Bismuthene has attracted a great deal of attention because of its unique electronic and optical properties. However, there are few reported applications of bismuthene in nonlinear optical applications. In this research, a dissipative soliton ytterbium-doped mode-locked fiber laser at 1 μm regime with a bismuthene saturable absorber (SA) by using evanescent field interaction for the first time is demonstrated. The nonlinear optical absorption of microfiber-based bismuthene SA is shown experimentally by using a homemade ultrafast fiber laser, whose saturation intensity and modulation depth are about 13 MW cm-2 and 2.2%, respectively. Relying on the excellent nonlinear optical property of the bismuthene SA, the typical dissipative solitons with a repetition rate of 21.74 MHz are generated at a center wavelength of 1034.4 nm. The time-bandwidth product of the pulse is about 23.07 with a pulse width of 30.25 ps. The results demonstrate that bismuthene is a good candidate for application in a 1 μm wave-breaking-free mode-locked fiber laser and nonlinear photonic components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call